Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.
نویسندگان
چکیده
The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth's time-dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared. Key Words: Astrobiology-Extrasolar terrestrial planets-Habitability-Planetary science-Radiative transfer. Astrobiology 11, 393-408.
منابع مشابه
Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.
NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suita...
متن کاملReport on the Calibration of EPOXI spacecraft timing and reduction to Barycentric Julian
Background The primary application for the EPOXI/EPOCh high precision photometric imaging of stellar sources is to investigate the transit timing of their companion planets. The granularity in the timing accuracy limits the photometric precision and the base criteria require calibration of the spacecraft clock. The wavefronts from each extrasolar planetary system reaches the Sun, Earth, and spa...
متن کاملA Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets
The light scattered by an extrasolar Earth-like planet’s surface and atmosphere will vary in intensity and color as the planet rotates; the resulting light curve will contain information about the planet’s properties. Since most of the light comes from a small fraction of the planet’s surface, the temporal flux variability can be quite significant, ∼ 10−100%. In addition, for cloudless Earth-li...
متن کاملRotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets
We have obtained the first time-resolved, disk-integrated observations of Earth’s poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map thei...
متن کاملar X iv : a st ro - p h / 07 03 32 8 v 1 1 3 M ar 2 00 7 Observations of Extrasolar Planets Enabled by a Return to the Moon
Ambitious studies of Earth-like extrasolar planets are outlined in the context of an exploration initiative for a return to the Earth's Moon. Two mechanism for linearly polarizing light reflected from Earth-like planets are discussed: 1) Rayleigh-scattering from a planet's clear atmosphere, and 2) specular reflection from a planet's ocean. Both have physically simple and predictable polarized p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Astrobiology
دوره 11 5 شماره
صفحات -
تاریخ انتشار 2011